

Evaluation of Typhoid antigen test for qualitative and differential detection of *Salmonella Typhi* and *Salmonella Paratyphi* in human blood culture

Sharma M,¹ Jha B,¹ Neupane D,¹ Bhatt CP¹ , Pant S² , Sapkota J¹

¹Manisha Sharma, Beena Jha, Deepa Neupane, Chandra Prakash Bhatt, Department of Microbiology; ² Subash Pant, Department of Internal Medicine, Kathmandu Medical College and Teaching Hospital, Sinamangal, Kathmandu, Nepal;

³Jyotshna Sapkota, Department of Microbiology, Nepal Medical College and Teaching Hospital, Attarkhel, Kathmandu, Nepal.

ABSTRACT

Introduction: Typhoid and Paratyphoid fever are enteric infections caused by the bacteria *Salmonella enterica* serovar Typhi (S. Typhi) and S. Paratyphi A, B and C respectively. This research evaluated an immunochromatographic rapid diagnostic tests (RDT) Typhisure[®], for detection of S. Typhi and S. Paratyphi antigen in blood culture.

Objectives: To test for qualitative and differential detection of S. Typhi and S. Paratyphi antigen in human blood culture specimen by Typhisure.

Methodology: A descriptive cross-sectional study was conducted in a tertiary care hospital from August- October, 2024 after obtaining ethical clearance. Blood sample from 758 patients were collected aseptically. Rapid diagnostic test was performed by Typhisure on blood culture positive specimen and in parallel, conventional subculture, isolate identification was done.

Results: Among 758 blood culture specimen, 100 blood culture broth showing evidence of growth were further evaluated. Among these, *Salmonella Paratyphi* A was identified from 4 patients and *Salmonella Typhi* from 6 patients. The Typhisure RDT by Koshibio Diagnostics showed a sensitivity of 100% and specificity of 100% in detection of *Salmonella* Typhi from blood culture broth. Similarly, in all 4 Blood culture positive *Salmonella Paratyphi*, antigen was detected by Typhisure (Sensitivity 100%). However, one test came as false positive. two tests were considered invalid as the control line failed to appear in the kit.

Conclusion: Conventional blood culture broth with the RDT for antigen detection could pave a pathway forward for early diagnosis of enteric fever in resource limited setting like ours where Bactec, biochemical tests and Serotyping is not available in primary healthcare settings.

Keywords: Blood culture; Enteric fever; Rapid diagnostic tests (RDTs); S. Typhi; S. Paratyphi

Access this article online

Website: www.jkmc.com.np

DOI: <https://doi.org/10.3126/jkmc.v13i3.82874>

HOW TO CITE

Sharma M, Jha B, Neupane D, Bhatt CP, Pant S, Sapkota J. Evaluation of Typhoid antigen test for qualitative and differential detection of *Salmonella Typhi* and *Salmonella Paratyphi* in human blood culture. J Kathmandu Med Coll. 2024;13(3):145-9.

Submitted: Nov 17, 2024

Accepted: May 15, 2025

Published: Aug 5, 2025

Address for correspondence

Dr. Manisha Sharma,
Department of Microbiology, Kathmandu Medical College,
Sinamangal, Kathmandu, Nepal.
E-mail: manishasharma84@yahoo.com,
Phone: +977-9841744187

INTRODUCTION

Enteric fever is a systemic infection caused by *Salmonella enterica* serovars Typhi and Paratyphi A, B, and C, with significant morbidity and mortality in resource-limited regions such as Asia, Africa, and South America due to poor sanitation and unsafe water.^{1,2}

Clinical symptoms are non-specific, making laboratory diagnosis crucial but challenging.³ Blood culture is the reference standard, yet it has variable sensitivity (40-80%), requires technical expertise, is costly, and takes

Copyright © 2024 Journal of Kathmandu Medical College (JKMC)

ISSN: 2019-1785 (Print), 2091-1793 (Online)

 This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

2–3 days.⁴ Many typhoid cases go undetected due to limited healthcare access or false negatives.⁵

Rapid diagnostic tests (RDTs) offer faster, simpler alternatives with lower costs and minimal training requirements.⁶ However, a meta-analysis by Wijedoru et al. found that current RDTs, including TUBEX, Typhidot, and Test-it Typhoid, lack sufficient sensitivity and specificity to replace culture-based methods.² WHO recommends that ideal tests for typhoid should approach 100% sensitivity and specificity.² Thus, blood culture remains the gold standard for definitive diagnosis and antimicrobial susceptibility testing, despite its limitations.⁷

In this study, we evaluated the sensitivity and specificity of the Typhisure® test, a lateral flow immunoassay, which aims to improve detection of *S. Typhi* and *S. Paratyphi* antigens from blood culture samples.

METHODOLOGY

A descriptive cross-sectional study was done from a period of 6th August 2024 to 30th October 2024 in Department of Microbiology, after obtaining ethical clearance from Institutional Review Committee (IRC) of Kathmandu Medical College (Ref no.05082024/07). Convenient sampling method was used and the sample size was calculated using the Formula:

$$N = z^2 pq/e^2$$

$$(1.96)^2 \times 5.4 \times 94.6/5^2 = 78.49 = 79$$

Where, $z = 1.96$

Prevalence of enteric fever (p) = 5.4%⁸

$$q = 100 - p = 100 - 5.4 = 94.6$$

e (allowable error) = 5

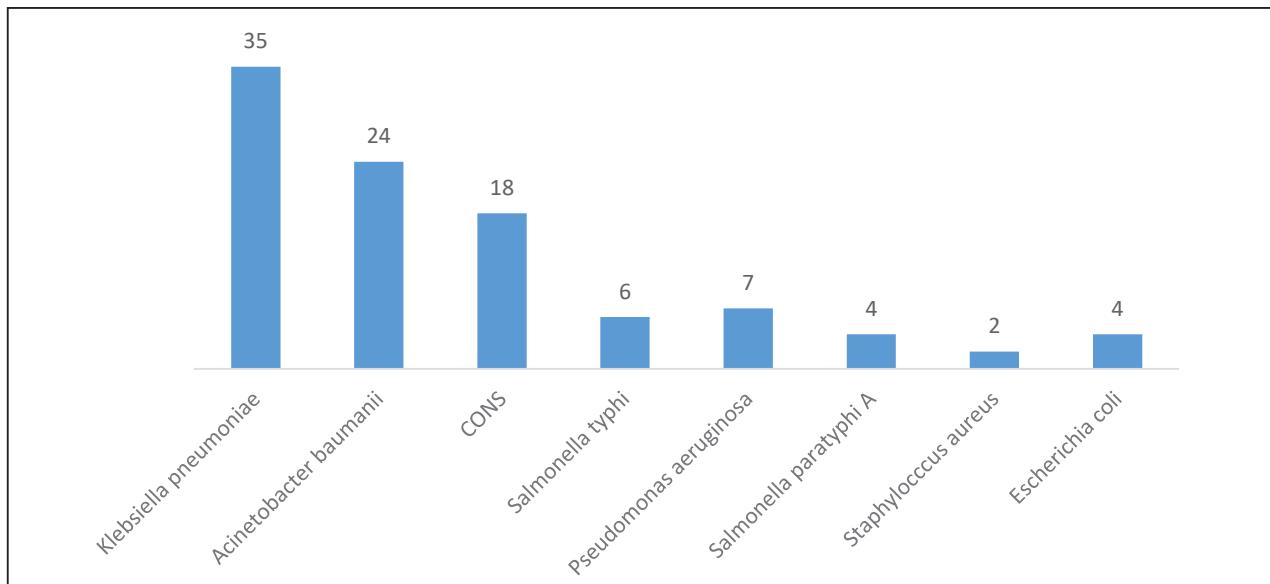
All the positive blood culture bottles ($n=100$) from total sample of 758 patients received during the study period were further processed using standard microbiological methods for identification and characterization of the etiological agent. So the final sample size was 100. For rapid diagnostic testing by Typhisure, blood was drawn aseptically using sterile syringe from blood culture bottles which showed evidence of growth into fresh test tubes. The procedure was carried out in biosafety cabinets in Microbiology laboratory. 50-70 microliters of such specimen was added into the sample well of

the test device. The broth used was BHI, according to our hospital's protocol and in lieu with kit's manual, which specifies any blood culture broth to be used for the test. Test result was read and interpreted within 15 minutes. A positive result was indicated by pink/purple lines at the test line regions "St" or "Spt," along with a line at the control line region "C." A negative result was indicated by the absence of lines at the test line regions and a line at the control line region "C." If the control line region "C" did not exhibit a pink/purple line, the test was considered invalid.

A structured Performa that included all pertinent information was used to gather the necessary data. Data analysis was done using IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, N.Y., USA).

RESULTS

Among total of 758 blood culture samples, 100 blood culture broth showing evidence of growth (eg. turbidity, pellicle formation) after 24 hrs of aerobic incubation at 37°C were further evaluated. The culture bottle not showing evidence of growth at 24 hrs were further incubated and reevaluated at 48 hrs and 72 hrs. The highest no. of organisms isolated were *Klebsiella pneumoniae* (35) followed by *Acinetobacter baumanii* (24).


Salmonella Typhi was isolated from 6 patients and *Salmonella Paratyphi A* from 4 patients. Among them, 6 were male and 4 were female patients (Figure 1).

Typhisure RDT correctly identified *Salmonella Typhi* antigen in 6/6 (100%) blood culture samples, corresponding to a sensitivity of 100%. The specificity was 100% as none of the non- *Salmonella* isolates showed positive results (Table 1).

Similarly, in all 4 Blood culture positive *Salmonella Paratyphi A*, antigen was detected by Typhisure (Sensitivity 100%). However, 1 kit showed positive reaction in all 3 bands, i.e. for both *Salmonella Typhi* and *Salmonella Paratyphi*, however in repeated subcultures, only *Salmonella Typhi* was yielded (Specificity 90%). Moreover, 2 tests were invalid as the control line failed to appear after testing. On repeating the tests both cultures yielded negative results.

Table 1: Sensitivity and specificity of Typhisure in comparison with traditional culture and identification

Organism isolated	Blood culture	Typhisure	Sensitivity/ Specificity
<i>Salmonella Typhi</i>	6	6	100% / 100%
<i>Salmonella Paratyphi</i>	4	5	100% / 90%
Invalid tests for typhisure: 2 (2%)			

Figure 1: Organisms isolated from blood (n)**Figure 2:** Photographs depicting both *Salmonella* Typhi and Paratyphi positive, *Salmonella* Typhi positive, *Salmonella* Paratyphi positive and Negative results respectively.

DISCUSSION

In this study, we evaluated the performance of lateral flow immunoassay for the qualitative and differential detection of *S. Typhi* and *S. Paratyphi* antigen in blood culture broth after aerobic incubation of 24 and 48 hrs at 37°C.

Among total of 758 blood culture samples, 100 showed evidence of growth, which were further evaluated for the study. *Klebsiella pneumoniae* were isolated with the highest frequency (35) followed by *Acinetobacter baumanii* (24). The high specificity of Typhisure® for *Salmonella* Typhi (100%) was confirmed as all non-salmonella cases gave negative results. However, the test kit had 90% specificity for *S. Paratyphi*.

In this study, 6 (0.79%) *Salmonella* Typhi and 4 (0.52%) *Salmonella* Paratyphi A were isolated among 758 blood culture samples. Nepal is a low-income country with a population of 28 million where Typhoid is endemic.⁹ In prospective surveillance at sites with blood culture capacity, only 4.1% of those clinically diagnosed with typhoid had positive blood cultures for typhoidal *Salmonella*, and this rate ranged between 0 and 2.8% in rural areas of Nepal.¹⁰ In April 2022, a national campaign was launched to introduce typhoid conjugate vaccines, the success of which might have been reflected in our study as very less number of *Salmonella* Typhi were isolated.

The Typhi Sure RDT by Koshibio Diagnostics showed a sensitivity of 100% and specificity of 100% in detection

of *Salmonella* Typhi from blood culture broth. We did not find any false positive results. However, since we did not test Typhisure in all blood culture negative cases, we cannot accurately confirm its diagnostic ability in blood culture negative cases.

Similarly, in 4 Blood culture confirmed isolates, *Salmonella* Paratyphi antigen were detected (Sensitivity 100%). 1 kit showed positive reaction in all 3 bands, i.e. for both *Salmonella* Typhi and *Salmonella* Paratyphi, however in repeated subcultures, only *Salmonella* Typhi was yielded (Specificity 90%). This may be attributed to antigenic cross reaction between these 2 serovars. The modification of the kit may be warranted after further evaluation in different centres. Moreover, 2 (2%) tests were invalid as the control line failed to appear after testing. This may be due to manufacturer's defect, or the storage and shipment issues prior to arrival of the kit to the laboratory. The positive predictive value is one of the important character of a RDT. The positive predictive value of the Typhisure test was 100% as all culture positive salmonella tested positive when initially tested with the kit. Therefore, this assay can be helpful to the clinician for initiation of the therapy.

In a similar study for assessing dipstick assay for diagnosing typhoid fever in Indonesia, the sensitivity of the assay was found to be 69.8% and 86.5% when compared with bone marrow and blood cultures respectively.¹¹ A review by Wijedoru et al of 37 studies which evaluated the diagnostic accuracy of RDTs concluded that the RDTs evaluated are not sufficiently accurate to replace blood culture as a diagnostic test for enteric fever.¹²

REFERENCES

1. Khaliq A, Yousafzai MT, Haq S, Yaseen R, Quershi S, Rind F, et al. A review of toolkits and case definitions for detecting enteric fever outbreaks in Asian and African countries from 1965-2019. *J Glob Health.* 2021;11:04031. [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
2. Saha T, Arisoyin AE, Bolu B, Ashok T, Babu A, Issani A, et al. Enteric fever: diagnostic challenges and the importance of early intervention. *Cureus.* 2023 Jul 13;15(7). [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
3. Piankeu Y, Dahlia A, Fodouop, Chegaing SP, Noubom M, Djoumsie G, et al. Epidemiology and performances of Typhidot immunoassay and Widal slide agglutination in the diagnosis of typhoid fever in febrile patients in Bafoussam City, Cameroon: A cross-sectional comparative study. *Can J Infect Dis*

The current study has limitations as the sample size of *Salmonella* positive blood culture were low.

Moreover, the kit does not differentiate between *Salmonella* Paratyphi A, B and C. The strength of the study was that such type of evaluation of *Salmonella* RDTs were not done previously in Nepal, which is endemic for typhoid. We evaluated conventional blood culture broth with the RDT which could pave a pathway forward for resource limited setting like ours where Bactec and Biochemical tests and Serotyping is not available in primary healthcare settings as diagnosis can be made earlier and thus therapeutic interventions could be started.

This was a descriptive study evaluating qualitative and differential detection of *S. Typhi* and *S. Paratyphi* antigen in human blood culture specimen by Typhisure®. A RCT evaluating different RDTs would have given comprehensive analysis on the kit's specificity and sensitivity in comparison to others. Moreover, the *Salmonella* isolates were low in our study.

CONCLUSION

The test could be a reliable aid to conventional blood culture as in the time required for subculture and antimicrobial susceptibility results, presumptive diagnosis and treatment could be decided by the treating physician. However, more widespread trials of the kit has to be done for testing its efficacy.

Source of Support: Koshibio diagnostics provided the kit free of cost to conduct this study.

Conflict of Interest: None

Med Microbiol. 2024;6635067:15 pages. [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)

4. Kuijpers LMF, Chung P, Peeters M, Phoba MF, Kham C, Barbe B, et al. Diagnostic accuracy of antigen-based immunochromatographic rapid diagnostic tests for the detection of *Salmonella* in blood culture broth. *PLoS One.* 2018 Mar 7;13(3). [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
5. Phillips MT, Antillon M, Bilcke J, Bar-Zeev N, Limani F, Debellut F, et al. Cost-effectiveness analysis of typhoid conjugate vaccines in an outbreak setting: a modeling study. *BMC Infect Dis.* 2023;23(1). [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
6. Wijedoru L, Mallett S, Parry CM. Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever. *Cochrane Database Syst Rev.* 2017 May 10;(5). [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)

7. Getahun Strobel A, Airs S, Nguyen C, et al. Assessment of rapid diagnostic tests for typhoid diagnosis and assessment of febrile illness outbreaks in Fiji. *Am J Trop Med Hyg.* 2022;106(2):543-549. [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
8. Pokharel P, Rai SK, Karki G, Katuwal A, Vitrakoti R, Shrestha SK. Study of enteric fever and antibiogram of *Salmonella* isolates at a teaching hospital in Kathmandu Valley. *Nepal Med Coll J.* 2009 Sep 1;11(3):176-8. [\[PubMed\]](#) [\[Full Text\]](#)
9. Mejia N, Abimbola T, Andrews JR, Vaidya K, Tamrakar D, Pradhan S, et al. Typhoid and paratyphoid cost of illness in Nepal: patient and health facility costs from the Surveillance for Enteric Fever in Asia Project II. *Am J Trop Med Hyg.* 2020;71(Suppl 3). [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
10. Tamrakar D, Vaidya K, Yu AT, Aiemjoy K, Naga SR, Cao Y, et al. Spatial heterogeneity of enteric fever in 2 diverse communities in Nepal. *Clin Infect Dis.* 2020;71(Suppl 3) -S213. [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
11. Gasem MH, Smits HL, Goris MGA, Dolmans WMV. Evaluation of a simple and rapid dipstick assay for the diagnosis of typhoid fever in Indonesia. *J Med Microbiol.* 2002 Feb;51(2):173-177. [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)
12. Wijedoru L, Mallett S, Parry CM. Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever. *Cochrane Database Syst Rev.* 2017 May 26;5(5) . [\[PubMed\]](#) [\[Full Text\]](#) [\[DOI\]](#)